on generalization of prime submodules

نویسندگان

m. ebrahimpour

shahid bahonar university of kerman r. nekooei

shahid bahonar university of kerman

چکیده

let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n  2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 por a1 . . . an−1 2 (p : m). in this paper we study (n − 1, n) − -prime submodules(n  2). a number of results concerning (n−1, n)−-prime submodules are given.modules with the property that for some , every proper submodule is (n−1, n)−-prime, are characterized and we show that under some assumptions (n−1, n)-primesubmodules and (n − 1, n) − m-prime submodules coincide (n,m  2).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of prime submodules

Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...

متن کامل

SOME RESULTS ON STRONGLY PRIME SUBMODULES

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...

متن کامل

On the Prime Submodules of Multiplication Modules

By considering the notion of multiplication modules over a commutative ring with identity, first we introduce the notion product of two submodules of such modules. Then we use this notion to characterize the prime submodules of a multiplication module. Finally, we state and prove a version of Nakayama lemma for multiplication modules and find some related basic results. 1. Introduction. Let R b...

متن کامل

On graded classical prime and graded prime submodules

‎Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded‎ ‎commutative ring and $M$ a graded $R$-module‎. ‎In this paper‎, ‎we‎ ‎introduce several results concerning graded classical prime‎ ‎submodules‎. ‎For example‎, ‎we give a characterization of graded‎ ‎classical prime submodules‎. ‎Also‎, ‎the relations between graded‎ ‎classical prime and graded prime submodules of $M$ are studied‎.‎

متن کامل

A GENERALIZATION OF PRIME HYPERIDEALS

‎‎Let $R$ be a multiplicative hyperring‎. In this paper‎, ‎we introduce and study the concept of n-absorbing hyperideal which is a generalization‎ ‎of prime hyperideal‎. ‎A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of ‎$‎R‎$‎ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$‎, ‎then there are $n$ of the $alpha_i^,$s whose product ...

متن کامل

On T -Rough Prime and Primary Submodules

Roughness in modules have been investigated by B. Davvaz and M. Mahdavipour in 2006 [5]. The purpose of this paper is to introduce and discuss the concept of T -rough prime and primary submodules which is a generalization the lower and upper approximation submodules over a commutative ring. We define a set-valued homomorphism on a module and study some properties of it . We prove some results f...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۳۹، شماره ۵، صفحات ۹۱۹-۹۳۹

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023